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Finite-size scaling analysis of generalized mean-field theories 
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Institut fGr Theoretische Physik, UnivelsiW Heidelberg, Philosophenweg 19, 
69120 Heidelberg, Germany 
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Abstract We investigate families of generdized mean-field theories that can be formulated Using 
the Peierls-Bogoliubov inequality. For test Hamiltonians describing muNally non-interading 
subsystems of increasing size, the thermodynamics of these mean-field-type systems approaches 
that of the infinite, M y  interacting system except in the immediate vicinity of their respective 
mean-field critical points. Finitesize scaling analysis of this mean-field critical behaviour allows 
us to exwct the critical exponents of the fully interacting system. It Nms out that rhis procedure 
amounts to the coherent anomaly method (CAM) proposed by Suzuld, which is thus given a 
clear interpretation in terms of conventional reiormalidon group ideas. Moreover, given the 
geometry of approximating systems, we can identify the family of appmximants which is optimal 
in the sense of the Peierls-Bogoliubov inequality. In the case of the m king model it N r n s  out 
that, surprisingly, this optimal family gives rise to a spurious singularity in the thermodynamic 
functions. 

1. Introduction 

Standard wisdom has it that closed form approximations and renormalization group methods 
play complementary roles in the analysis of the thermodynamic behaviour of many-particle 
systems. The former usually generate mean-field-type theories and, as such, often provide 
efficient tools to obtain a good qualitative picture of a given system's thermodynamics. 
Equations of state and qualitatively correct phase diagrams are relatively easily calculated. 
Well known examples of such approaches are the van der Waals theory of imperfect gases 
and the Weiss self-consistent theory of ferromagnetism. With respect to a quantitative 
description of phase transitions, however, these theories invariably fail and produce the 
wrong critical exponents. Renormalization group ideas, on the other hand, provide a 
satisfactory theoretical description of critical phenomena and the interplay of critical 
exponents. Except for the determination of critical exponents, renormalization group 
calculations are rather involved and do not easily allow us to obtain a picture of the system's 
thermodynamic properties. 

In the course of time various refinements of the standard mean-field theory have been 
proposed; for an overview see 111. A precedent was set after the first such attempt due 
to Bethe [Z]: short-range correlations of the dynamic variables are taken into account by 
considering small clusters. Equations of state are generated in the form of selfconsistency 
equations which impose certain physically plausible constraints, such as homogeneity of the 
order parameter. This inclusion of short-range correlations, hence of additional phase space, 
leads to improved (i.e. lower) estimates of the critical temperature; but it fails to produce 
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improved critical exponents-the reason being that critical phenomena are dominated by 
long-range correlations. 

An alternative, more systematic conshuction of mean-field-type theories is derived from 
a variational scheme based on the Peierls-Bogoliubov (PB) inequality [3]. This inequality 
is based on convexiv arguments and states that, given a system with Hamiltonian 7-1, its 
free energy F can be approximated from above by the trial ‘free energy’ Q as 

F < @:= Fo+ (7-1-7-1o)o = (7-1)o - TSo. (1.1) 

Here, ‘Ho is an arbitrary test Hamiltonian for the system in question which depends 
on some set [h=} of variational pxameters, (. . .)o denotes the average over the Gibbs 
distribution generated by 7-10, and FO and SO denote the corresponding free energy and 
entropy. The idea is to choose 7-10 such that the corresponding Gibbs distribution is 
analytically or numerically tractable and to determine the variational parameters h, so 
as to minimize the right-hand side of (1.1). The resulting minimization conditions replace 
the above self-consistency equations and generate the system’s equations of state. To state 
an example, let 7-1 describe the Ising spin system on a lattice in d space dimensions. The 
simplest approximating 7-10 then describes a system of non-interacting spins in a mean field 
ho, that is, 7-10 = -ho EL S;. Minimizing the corresponding trial free energy with respect to 
ho generates the conventional Weiss mean-field equation of state. For a recent application 
of tbe variational method to CsNiF3 chains see [4]. 

Short-range correlations can now be taken into account by choosing a system of mutually 
independent clusters of spins, which together make up the whole system. Increasing the 
size of these clusters, one obtains a scheme of approximations that should systematically 
approach the thermodynamics of the underlying, fully interacting (spin) system. 

Despite the fact that every PB system of finite (or quasi onedimensional) geomeny 
exhibits mean-field-type critical behaviour, the true critical exponents of the underlying 
system can be extracted by invoking finite-size scaling (FSS) ideas. Thermodynamic 
functions can be evaluated as functions of cluster size. We will show that this procedure 
is equivalent to Suzuki’s coherent anomaly method (CAM) [5,6]. CAM is thus demonstrated 
to be firmly rooted in the FSS philosophy and hence in conventional renormalization group 
ideas. 

Within the general PB scheme, and for a given cluster geometry, various families of 
approximating systems can be conspucted which differ in number, symmetries or even 
nature of their variational parameters. Of all of these, the optimal family-in the sense 
of minimal trial free energy-is the one with the largest set of independent variational 
parameters compatible with the symmetries of the system. 

In this paper we will explore a collection of approximating sequences for the ZD king 
model. Two families will prove to be of special interest: cyclically ‘closed’ strips that 
display Suzuki’s coherent anomaly, and ‘open’ strips of lower symmetry that can be 
identified as the optimal PB sequence. Surprisingly, this optimal family gives rise to a 
spurious singularity of thermodynamic functions making any extrapolation to the full ZD 
model based on the open strip’s mean-field critical behaviour impossible. Thus, for open 
strips our attempt to use renormalization group (RC) ideas to extract asymptotic critical 
exponents does not lead to useful results. 

In section 2 we introduce a collection 
of variational trial systems for the 2D king system based on the PB inequality. Test 
Hamiltonians will be defined on M x 03 strips which may be open or closed in the M 
direction. We show that, quite generally, all but one of the extremization conditions for 

The outline of our paper is ai follows. 
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the variational parameters can be solved explicitly, leaving only one non-trivial condition 
as the equation of state. In section 3 we use FSS to derive the scaling of the mean-field 
critical temperatures TM with strip width M .  For test ensembles based on cyclically closed 
strips (subsection 3.1). this provides a first method to exaact the susceptibility exponent 
y of the underlying, fully interacting system. The second method uses the mean-field 
susceptibilities and their scaling with strip width M .  The coherent anomaly, which is 
the basis of this method, is given a simple explanation as a standard FSS phenomenon. 
Subsection 3.2 is devoted to an analysis of variational approximants defined on open strips. 
These were identified in section 2 as the best sequence of variational approximants of strip 
geometry in the framework of the PB inequality. Contrary to expectations, a FSS analysis of 
these ‘optimal‘ variational approximants predicts a spurious singularity of thermodynamic 
functions that precludes any extiapolation attempt to the two-dimensional system. Section 4 
is a discussion of the results. 

2. Variational approximants for the 2D king model 

We now introduce a collection of approximating systems for the 2D king model based on 
the PB inequality. Let 

describe the fully interacting system on a square lattice of N‘ x N king spins, and let 
us assume periodic boundary conditions in both directions. As a test ensemble we use a 
system of mutually non-interacting strips of size M x N with periodic boundary conditions 
in the ‘longitudinal’ N direction, and either free or periodic boundary conditions in the 
‘transverse’ M direction. 

2.1. Test ensembles based on closed strips 
Let us first consider the version which is cyclically closed in both directions. A simple 
Hamiltonian for a single strip of width M ,  which exhibits full translational invariance in 
both directions, is given by 

where we have introduced three variational parameters {h,}: = (hT, hL, h ] :  a coupling hT 
for transverse nearest neighbours ( i j ) , ,  a coupling hL for longitudinal nearest neighbours 
( i j ) ,  and a variational field h. The trivial effect of the external field H has been absorbed 
into the definition of h. 

Let us denote the free energy density of an isolated strip with Hamiltonian (2.2) by 
fh = f,&(T, H ,  (ha}) .  Assuming N‘ to be an integer multiple of M ,  the P6 inequality for 
this set-up states that 

F < (PS,(T, H ,  {h , } )  =:~N’N&(T, H ,  (h,])  = N‘N f“ + J 1 - - - hT - 
[ M  ( (  i3 12 
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Here we have used the fact that (sisj)0 is given by (-afh/ah,) for transverse nearest 
neighbours and by (-afi/ahL) for longitudinal nearest neighbours within a strip, while 
( s i s j ) ~  = (s;)o(sj)o = ( -a f , / ah )2  =: (mC,)2 for spins belonging to dilfeerent strips. Here 
mC, denotes the magnetization of a skip of width M .  

S D Frischat and R Kiihn 

From (2.3) the minimization conditions are obtained in the form 

with h, E {hT, hL, h ] ,  and 

(2.5) 

Due to the concavity of fh as a function of ha-the Hessian (aZ fh/ah,ah,),# is a strictly 
negative definite matrix-the solution of (2.4) can be read off immediately: it is @p = 0, 
i.e. 

hL = J (2.7) 

Of these, only (2.8) is a non-trivial transcendental equation with a solution that varies with 
temperature T and external field I f .  It determines the mean field h = h(T, E?). The 
variational (mean-field) free energy density computed within this approach is then 

f g ( T ,  n) = &(T, H, h i r  h ~ ,  h(T, HI) (2.9) 

with variational parameters {hm)  determined by (2.6)-(2.8). 

solution manifold given by (2.8). This yields 
Thermodynamic functions are obtained by differentiation of f $ ( T , H )  along the 

where the subscripts 40, T denote differentiation along the manifold (0, = 0 at constant T .  
Partial differentials are taken as usual. With the help of (2.9) and age,lah, 0 one obtains 
the mean-field magnetization 

In a similar vein the mean-field susceptibility is found to be 

(2.11) 



Finite-size scaling analysis of generalized mean-field theories 2775 

That is, magnetization and mean-field susceptibility can be expressed in terms offree partial 
derivatives of the strip free energy f& of a strip, the strip being described by the Hamiltonian 
‘HL,N evaluated at parameter values given by (2.6)-(2.8). 

In principle, one may try to improve the approximation by introducing additional 
variational parameters that represent ‘generalized‘ couplings beyond the ones already 
contained in (2.2) which generate interaction terms added to ‘H&,N in a translationally 
invariant way. To be specific, we modify according to 

(2.13) 

where S2 denotes a collection of subsets of the M x  N strip which are mutually non-equivalent 
under translation. It turns out that such an enlarged space of variational parameters does 
not actually improve the variational free energy because the enlarged set of minimization 
conditions is solved by (2.6)-(2.8) and h, = 0 for all of the added~w g.0. To see this, 
note that the modification (2.13) implies a corresponding replacement 

(2.14) 

where f& is now the free energy corresponding to the modified Hamiltonian (2.13). Hence 
the enlarged set of minimization conditions can be formulated in a complete analogy to 
(2.4), albeit with an enlarged set of variational parameters, h, E {hT,  hL. h, {hu)wsn} and 

Due to the concavity of f&(T,  H, {h,]) the assertion follows, that is h, ~= 0 for all w g S2. 

2.2. Test ensembles based on open strips 

An alternative sequence of test  systems is defined by considering ‘open’ M x N strips 
with free boundq  conditions in the transverse M direction. While such strips retain 
the full translational invariance in the closed N direction, they exhibit only a reflection 
symmetry j + M + 1 - j in the open M direction. This reduced symmetry group allows 
us to inhoduce a considerably larger set of independent variational parameters. A simple 
Hamiltonian respecting these symmetries is given by 

N I L  w’ 
%,N --E - [ ChT.j  ~ z , x s i , x + ~  +,ChL, j  &i+L.x 

14 j=l K e [ j , M - j ]  j=l u€( j ,M+l- j I  

(2.16) 

where p = [MI21 and p‘ = [ ( M  + l)/2] with the convention that [k]  denotes the largest 
integer less than or equal to k.  We have also introduced a two-dimensional notation to label 
the vertices of the strip. Note that the variational fields and couplings vary from row to 
row, but respect the reflection invariance of the open strip in the M~ direction. The total 
number of independent variational parameters is 3 M / 2  for even M and (3M + 1)/2 for odd 
M .  
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Denoting the free energy density of an isolated (open) strip with Hamiltonian (2.16) by 
f ;  = f;(T,  H ,  {hT,j), (hL,j}, {hj))  and assuming N' to be an integer multiple of M. we 
conclude by PE inequality that 

F < 4%(T9 H, {hT,j)s {hL,j), Ihjl) 

(2.17) 

The minimization conditions are formally the same as (2.4), with f &  replaced by f;, with 

I%) = I { J  - h ~ , j ) ,  I J  - hL.jJ, I-hj)j=z ..... p,, JmG., -h i} .  (2.18) 
Here ms,, = ( s i .~ )o  = -(M/Z)af$/ahl. Again, due to concavity, the solutions of the 
minimization conditions are +p = 0, or 

ha E { { ~ T , F I ,  IhL,j}, Ihj}}, and 

hT,j = J (2.19) 

hLj = J (2.20) 

hj=O for j = 2  , . . . , P I  (2.21) 

(2.22) 

That is, all variational couplings are equal to the coupling J of the underlying system, and 
all variational fields except for the boundary field hl vanish. 

Thermodynamic functions are obtained as before. In particular, the mean-field 
magnetization of an 'open' strip of width M is given by 

and the mean-field susceptibility by 

(2.23) 

(2.24) 

As above, thermodynamic functions can be expressed in terms of thefree partial derivatives 
of the free energy of a single saip of corresponding geometry, described by the Hamiltonian 
(2.16) with parameter values given by (2.19)-(2.22). 

As in the case of closed approximants, any attempt to enlarge the space of variational 
parameters by adding further (multi-spin) interactions to 'H&, does not lead to any 
improvement of the variational approximations: the minimization condition requires the 
corresponding coupling constants to be zero. In particular, an extra variational coupling hT,M 
which would close the strip in the transverse M direction will have to vanish, rendering the 
strip open again at optimally chosen variational parameters. Therefore, within the framework 
of strip geometries, the test ensemble based on open ships with Hamiltonian (2.16) may be 
identified as optimal in the sense of the PB inequality. It uses the largest meaningful set of 
independent variational parameters compatible with the lowest symmetry of M x CO ships. 
Hence, the minimum obtained by f ;  is the total minimum of the sensible trial free energies 
4. 
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3. Finite-size scaling (FSS) analysis of variational approximants 

We now turn to an evaluation of thermodynamic functions computed within the variational 
approximation schemes described in section 2. The dependence of the thermodynamic 
behaviour of mean-field test strips on their width M will be extracted by the use of FSS. 
Wherever possible we will determine critical exponents. 

In both cases only one variational parameter tumed out to be non-trivial. In the case 
of test ensembles living on closed strips, this parameter is a variational field h acting 
homogeneously on all spins and determined by (2.8), 

2 
M 

h = J-mL 

whereas in the case of test ensembles based on open strips, it is a boundary field hl acting 
only on the first and the Mth row of each strip and which is determined by (2.22), 

In both versions of the variational scheme, the approximation T ,  of the critical point Tc is 
signalled by the appearance of non-zero solutions of the variational field h or hl respectively. 
As the temperature T is lowered, the bifurcation from the zero solution occurs when (setting 
J = 1) 

2 am., 
I=-- (T, 

M ah 
= 0, h = 0) 

in the ‘closed‘ variant, and when 

(3.1) 

in the ‘open’ variant. The solutions of these equations define the mean-field critical 
temperatures TM. In the following, we discuss the scaling analysis of these equations 
and of the corresponding divergence of the mean-field susceptibilities (2.12) and (2.24). 
The two different cases will be considered separately. 

3.1. Finite-size analysis of test ensembles based on closed strips 

Let us begin with the sequence of approximants based on closed homogeneously magnetized 
strips. In this case both the variational field h and the external field H act homogeneously 
on all spins. As we have chosen ‘?-l>,N to depend on these fields through their sum H + h, 
the free energy f& is a function of ( H  + h) only, and we can replace partial derivatives of 
f& with respect to h by partial derivatives with respect to H and vice versa. Denoting the 
‘free’ susceptibility of a closed strip of circumference M by 

(3.3) 

we can formulate the critical condition (3.1) as 

2 
M 

1 = -x&(Thf,O) (3.4) 



2778 

and the expression (2.12) for the mean-field susceptibdity according to 

S D Frischat and R Kuhpl 

These two expressions are now directly amenable to analysis by FSS 171. 
Analysis of (3.4) will give the asymptotic behaviour of the reduced mean-field critical 

temperatures tM:= (TM - TC)/T,. Let us first recall the finite-size behaviour of the free 
energy of an king strip of width M in a zero field. Close to the critical temperature Tc of 
the 2D king system, the singular part of its zero-field susceptibility is given by the finite-size 
scaling expression 

where t = (T  - T,)/T,. This expression holds for open and closed strips aliie, albeit with 
different scaling functions. The behaviour of the scaling function &m(Z) in the limits 
z:= (Itl-"/M) -+ 0 and z + CO can be easily determined. These limits correspond to 
the cases M -+ CO at non-critical temperature T # Tc, or It1 --f 0 at finite size M e CO 
respectively. Regularity of the left-hand side of (3.6) in these cases implies the power laws 
eh,m(Z) - 1 for z --f 0 and Qhom(Z) - z-y'" for z -+ CO. 

This can be applied to the strips considered above. At temperatures at and above the 
mean-field critical temperature TM no variational field is present. Under the assumption that 
the temperatures TM are sufficiently close to Tc for large M, standard FSS holds, and (3.4) 
becomes 

As M -+ CO the argument Z M : =  (t;"/M) of the scaling function at T = TM can 
either vanish, converge to a non-zero constant, or diverge. The latter two cases lead 
to contradictions (y # U assumed), leaving ZM -+ 0 as the only possibility. Hence 
&,,,(ZM) - 1 as M -+ CO, and by (3.7) the mean-field critical temperatures TM 
asymptotically scale as 

tM = (TM - Tc)/Tc ,., M-'". (3.8) 

Note that y is the true susceptibility exponent of the underlying ZD king model so that (3.8) 
can be used to determine both Tc and y .  

The same analysis applied to (3.5) gives the behaviour of the mean-field susceptibility 
x$ in the vicinity of the mean-field critical temperatures TM. Expanding the denominator 
in small temperature differences t - t~ = (T - TM)/Tc above TM gives 

(3.9) 

The second term in the square brackets can be neglected, as ZM + 0 and -+ 0 for 
M -+ 03. we substitute M a t i y ,  cancel & ( T M ,  0) a tGyy8h, , , (ZM),  and finally arrive at 

2 2 -y-1 1 - -t-"!&?hom(Z) ( t  - t M ) - t ~  h'&hom(ZM) + vZM!&m(zM)l. M M 

(3.10) 
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Equation (3.10) exhibits the usual mean-field divergence of the susceptibility x$(T) cx 
(t - tM)-' as t + tu .   note that the prefactor itself diverges as M -+ CO, a 
phenomenon for which Suzuki coined the term coherent anomaly [5 ] .  Obviously, the 
coherent anomaly provides a second opportunity to extract the asymptotic susceptibility 
exponent y of the underlying system from the sequence of meanyfield approximationsl Our 
considerations clearly show that this method is entirely rooted in the FSS philosophy, hence 
in conventional RG ideas. This relationship has hitherto been much less clear in the literature 
on this topic. 

The dependence of the mean-field critical temperatures Tu on the strip width M is 
displayed in figure 1. The convergence to the asymptotic value is fairly slow, as can be 
anticipated from (3.8). Nevertheless, good extrapolation algorithms (see for instance [8]) 
predict Tu'+ T, = 2.26f0.01, which is reasonably close to the exact value of Tc = 2.269. 
Setting T, = T& in (3.8) we obtain an estimate for v, that is y + 1.77i0.03 as M -+ W. 

While not extraordinary, this result is also not too far from the exact value. 

3.2 I I 

TA, 2.6 1 
2'4 T, 
2.2 

2 '  I 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

1/M 

Figure 1. Mean-field critical temperature TM of closed approximanti as afunction of  the inverse 
strip width 1 / M .  

. .  ~ 

... 
2.2 

2.1 -I 
2 t  t 1 

+ 1~ 7 1.9 1 

I C  I .." 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

2 / ( M  + M') 

Figure 2. Estimate of  the susceptibility exponent y derived from the ratio of prefactors , f ~  of  
the mean-field susceptibility for two successive strip widths M and M' = M + I as a function 
of 2 / ( M  + MI) .  

Figure 2 shows the values of y obtained from the ratio of prefactors XM '= fi(y-l) of 
the mean-field susceptibility (3.10) for two successive strip widths M and M' = M + I. 
Assuming Tc = Tm, we extrapolate this sequence of y values to y, = 1.765 Ifr 0.01, which 
produces a reasonably good agreement with the exact result y = 1.75 for the susceptibility 
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exponent. With the exact value for Tc the extrapolation yields a slightly better result, 
ym = 1.751 f 0.01. which gives the susceptibility exponent to within less than 1% of the 
exact rcsult. 

3.2. Finite-size analysis of test ensembles based on open strips 

Much to our surprise, the approximation scheme breaks down in the case of the ensemble 
of open, inhomogeneously magnetized strips-the family of systems we identified as ideal 
in the sense of the PB inequality! 

By concavity, we have singled out the boundary field hl as the only non-trivial 
variational parameter. It affects only two spins per column. The self-consistency equation 
is given by (2.22) and the critical condition by 

S D Frischat and R K.iihn 

(3.11) 

Numerical values of TM obtained by transfer matrix calculations are plotted h figure 3. 
Unexpectedly, as M 00 they converge to a temperature Tm e 2.64 which is  different 
from the correct critical temperature Tc N 2.27 of the 2D king model. 

3.2 1 

I 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

1JM 

Figure 3. Mean-field critical t e m p e “  TM of open approximanfs as a function of the inverse 
strip width 1 / M .  Note &ai they do not extrapolate Io T, as M -f m. 

For a qualitative explanation of this behaviour, we again refer to FSS analysis. We note 
that the susceptibility 

that appears in the critical condition (3.11) is well known in the theory of surface critical 
phenomena [9,7]. It takes the scaling form 

X I . I ( T , ~ ~ , M )  - l ~ g l ~ l - i ~ i ( ~ ~ l ~ l - A ‘ ,  Itl-”/M)+ dz(hilt l-A1, Itl-”/M) (3.13) 

where A! is the gap exponent corresponding to hl (see [l0-121 for extensive treatments). 
In the limit z = ( l f l - ” / M )  + 0, which corresponds to first taking the thermodynamic limit 
and then approaching the critical temperature, it diverges logarithmically: 

XI.I(T) - log 1t1-1. (3.14) 
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This fact is closely related to the anomalous logarithmic divergence of the specific heat 
occumng in the 2D king lattice. Consequently, at finite width and at the critical temperature. 
( z  + m), the FSS behaviour of ~ 1 . 1  at a zero variational field is given by 

XI , l (T ,  M )  - IogM. (3.15) 

With these results at hand, we can now return to the critical condition 

1 * XI.I(TM, 0, M )  l o g t ~ l a l ( o ,  Z M )  + Z M ) .  (3.16) 

Again, the cases Z M  + constant and Z M  + CO as M + CO can be ruled out by (3.16) and 
(3.15) respectively. For Z M  + 0 (3.14) becomes 1 - logt;' or tM - 1, which is consistent 
with Z M  + 0. We therefore conclude that 

tM = (TM - Tc)/Tc - 1 (M + a). (3.17) 

The critical temperatures of the sequence of tesl systems based on open inhomogeneously 
magnetized strips do not converge to Tc, which conforms to our above observation. Note 
that this result is not merely an anomaly of the 2D Ising lattice. It does not, as it might seem, 
depend on the logarithmic singularity of ~ I , I ( T ) .  A similar calculation for the case of a 
non-zero exponent yI,l corresponding to ~ 1 . 1  gives just the same behaviour for the tM's. It 
has~tacitly been assumed that the edge itself cannot become critical at a temperatute different 
from that of the bulk's T,; this restricts the above argument to quasi-one-dimensional test 
systems. 

We can finally use these results to investigate the scaling of the mean-field susceptibilities 
(2.24) with strip width M near the respective mean-field critical points TM. Analogous to 
(3.5) we find the mean-field susceptibility 

(3.18) 

Here xM = a Z f / a H Z ,  x1 = - ( 2 / M ) a 2 f / a H a h l  and x , . ~  = - ( 2 / M ) a 2 f / a h :  are the 
'bulk' susceptibility and the two 'surface' susceptibilities well known in the standard 
treatment of surface critical phenomena. The mean-field susceptibility x$(T) differs from 
the free susceptibility X M ( T )  of a strip of the same geometry in two ways: by the action of 
the variational boundary field h l (T )  in the first term of the right-hand side of (3.18). and 
by an explicit mean-field divergence in the second term 

Both of these contributions can be shown to become irrelevant in the limit of large M .  
In this limit, ~ M ( T M ) / M  + 0 in view of (3.17), so that the two surface susceptibilities xi 
and x1.1 become independent of the strip width M. Setting them constant and expanding 
in small temperature differences above TM we arrive at 

(3.19) 

Thus, in the limit of large width M the explicit mean-field contribution is suppressed by 
a factor 1 / M .  Furthermore, the surface field h l ( T )  appearing below TM does not affect 
the thermodynamic properties of the bulk at large M since the thermodynamic limit is 
independent of boundary conditions. 
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We thus encounter the paradoxical situation of a singularity in the ‘open’ mean-field 
approximants which become spurious as the limit M -+ CO is taken. That is, even though 
thermodynamic functions exhibit a (suppressed) singularity at a temperature Tu > Tc, this 
singularity does not correspond to a change in the system’s thermodynamic properties in 
the l i t  M + CO. Evidently, no useful information can be drawn from these mean-field 
singnlarities and any attempt to extrapolate to the underlying ZD King lattice must fail. 

The true thennodynamic singularity of the mean-field susceptibility develops right at Tc 
in thefirst contribution to (3.18) by conventional reduction of the finite-size rounding of 
the bulk susceptibility XM as M -+ CO. 

4. Conclusions 

In this paper a generalized mean-field theory based on the PE inequality is used to define 
quasi-one-dimensional approximants for them king lattice. By convexity arguments, all but 
one of the minimization conditions for the variational parameters can be solved explicitly, 
a finding that is not restricted to the king model but holds generally for systems with a 
scalar order parameter. Thereby a systematic classification of PB approximants is possible. 
We singled out two types of strip: periodically ‘closed‘ strips with rotational symmetry in 
the direction transverse to the axis of infinite extent and ‘open’ strips of inhomogeneous 
magnetization. 

By standard FSS the former are shown to display a coherent anomaly. Estimates of 
critical exponents of the underlying, fully interacting king system can be extracted. At 
this point it has to be stressed that the variational method presented above should not 
be advocated as a new, superior numerical tool for computing transition temperatures or 
critical exponents; the estimates calculated above are clearly inferior to those obtained by 
Hu et ai [13]. In the original CAM scheme based on ad hoc self-consistency equations, 
mean-field critical temperatures behave like (TSAM - Tc) * M-””, whereas (3.7) states 
(T4B - Tc) - M-’/v; that is, the convergence of the PB critical temperatures is slower 
than in the scheme of Hu et ai (which in turn is slower than that of the conventional 
phenomenological RG procedure [14]). In the PB scheme the asymptotic regime of FSS 
power laws is reached only for very large strip width, corrections to scaling are, therefore, 
expected to play an important role. 

Nevertheless, we believe that our findings are of interest in their own right, since the 
appearance of a coherent anomaly in the family of ‘closed‘ approximants can be given a 
clear interpretation as an FSS phenomenon. 

It is difficult to give an intuitive explanation for the different scalings of the mean- 
field critical temperatures in the CAM (Weiss and Bethe approximations [13]) and the PB 
schemes respectively. In both cases critical conditions can be expressed in terms of summed 
correlation functions. In the PB scheme a true susceptibility involving correlations between 
spins at nil distances is compared with an expression of the order of the system size M, 
hence the appearance of the exponent y .  In the Weiss and Bethe critical conditions, on the 
other hand, correlations between spins at a minimal distance 8(M) dominate. Therefore, 
the relation between the correlation length e and the linear dimension M of the cluster 
plays the decisive role. This is responsible for the appearance of the exponent U in the 
corresponding scaling expression. 

In sharp contrast to expectations, the ‘open’ strips, which are found to be the optimal 
family of approximants in the sense of the PB inequality, give rise to a spurious criticality 
at a temperature different from the 2~ Ising critical temperature. Any extrapolation to 
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the full two-dimensional system based on the mean-field critical behaviour of this family 
must therefore fail. This unexpected result clearly shows that variational descriptions of 
many-particle systems should be used with the utmost caution. 

Acknowledgments 

It is a pleasure to thank Heinz Homer for many stimulating discussions and Jochen Rau for 
careful reading of the manuscript. 

References 

111 Burlev D M 1972 Phase Trmitionr and Critical Phenomm vol 2. ed C Domb and M Green .. 
(Lnndon: Academic) 

I21 Bethe H A 1935 Proc. R. Soc. A 150 552 .. 
[3] Peierls R 1934 Phys. Rev. 54 918 
141 Trudeau Y and Plumer M L 1995 Phys. Rev. B 51 5869 
[fl Suzuki M 1986 1. Phys. Soc. Japm 55 4205 
161 Suzuki M, Katori M and Hu X 1987 J.  Phy .  Soc. JapM 56 3092 
[7] Barber M N 1983 Phase Tmmitions and Crifical Phenomn vol 8, ed C Domb and J L Lebowitz 

[SI Henkel M and Schiitz G 1988 J. Physique A 21 2617 
[9] Binder K 1983 Phase h i t i o m  ~d Critical Phemmena vol 8, ed C Domb and J L Lebowitz 

[IO] Au-Yang H and Fisher M E  1975 Phys. Rev. B 11 3469 
[Ill Au-Yang H and Fisher M E 1980 Phys. Rev. 8 21 3956 
[I21 McCoy B M and Wu T T 1967 Phys. Rev. 162 436 
I131 Hu X, Kamri M and Suzuki M 1987 L Phys. Soc. Japan 56 3865 
1141 Nightingale P 1976 Physicu 83A 56 

(London: Academic) 

(London: Academic) 


